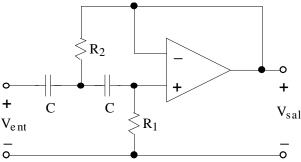

CUARTO EXAMEN PARCIAL (20 %)

PROBLEMA 1 (6 p)

Dada la función de transferencia:


$$H(s) = \frac{1,6.10^8 s^2 (s+50)}{\left(s^2 + 8s + 100\right)\left(s + 200\right)^3}$$

- a) (4 p) Graficar en la cuadrícula adjunta el diagrama de Bode de magnitud para $1 \le \omega \le 10^4$ rad/s, indicando las ganancias de las frecuencias de esquina. Explique.
- b) (2 p) Calcular el error en dB entre el diagrama asintótico y el exacto para las frecuencias $\omega = 10 \text{ rad/s}$ y $\omega = 200 \text{ rad/s}$.

PROBLEMA 2 (8 p)

Dado el siguiente circuito:

- a) (4 p) Hallar su función de transferencia de voltaje y demostrar que es un filtro pasa-altas de segundo orden. Hallar una expresión para ω_0 del filtro en función de C, R_1 y R_2 .
- b) (2 p) Si C=1 F, $R_1 = \sqrt{2} \Omega$ y $R_2 = 1/\sqrt{2} \Omega$, demostrar que el circuito es un filtro Butterworth normalizado (es decir, ω_0 es 1 rad/s y $|H(1)| = |H(\infty)|/\sqrt{2}$).
- c) (2 p) Diseñar mediante la técnica de escalamiento un filtro pasa-altas Butterworth de segundo orden con $f_0 = 2$ kHz utilizando $C = 0.1 \mu F$.

PROBLEMA 3 (6 p)

Se dispone de un inductor de 1 mH y una resistencia de 20 Ω .

- a) (3 p) Se desea diseñar un filtro pasabanda RLC cuya frecuencia de resonancia sea 100 kHz y cuyo Q sea el máximo posible. Determinar si la conexión debe ser paralelo o serie y calcular el valor del condensador y el Q.
- b) (3 p) Suponiendo que el condensador C es de 100 nF y que la conexión es paralelo, determinar la f₀ del circuito en Hz, el Q y las frecuencias de potencia mitad del circuito en Hz.